

EMIF10-LCD01C1

10 LINES EMI FILTER AND ESD PROTECTION

IPAD™

MAIN PRODUCT CHARACTERISTICS:

Where EMI filtering in ESD sensitive equipment is required:

- LCD for Mobile phones
- Computers and printers
- Communication systems
- MCU Boards

DESCRIPTION

The EMIF10-LCD01C1 is a 10 lines highly integrated devices designed to suppress EMI/RFI noise in all systems subjected to electromagnetic interferences. The EMIF10 flip chip packaging means the package size is equal to the die size. This filter includes an ESD protection circuitry, which prevents the device from destruction when subjected to ESD surges up 15kV.

BENEFITS

- EMI symmetrical (I/O) low-pass filter
- High efficiency in EMI filtering
- Very low PCB space consuming: < 7n:::::?
- Coating resin on back side
- Very thin package: 0.69 mm
- High efficiency in ESD suppression on input pins (IEC61000-4-? !avel 4)
- High reliability on each by monolithic integration
- High reducing of parasitic elements through integration and wafer level packaging.

COMP. IF.S WITH THE FOLLOWING STANDARDS:

NEC 61000-4-2:

Level 4 input pins 15kV (air discharge)

8kV (contact discharge)

Level 1 output pins 2kV (air discharge)

2kV (contact discharge)

MIL STD 833E - Method 3015-6 Class 3

Table 1: Order Code

Part Number	Marking
EMIF10-LCD01C1	FL

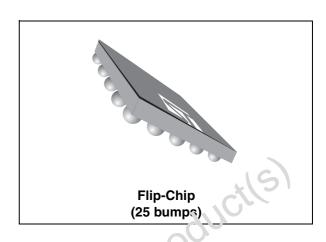


Figure 1: Pin Configuration (ball side)

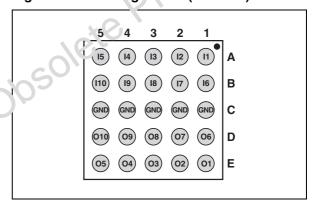
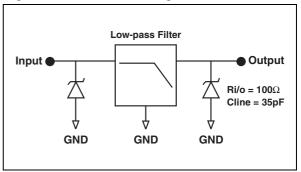



Figure 2: Basic Cell Configuration

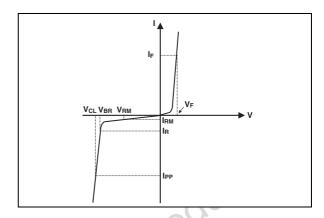


Table 2: Absolute Maximum Ratings $(T_{amb} = 25^{\circ}C)$

Symbol	Parameter	Value	Unit
T _j	Junction temperature	125	°C
T _{op}	Operating temperature range	-40 to + 85	°C
T _{stg}	Storage temperature range	-55 to +150	°C

Table 3: Electrical Characteristics $(T_{amb} = 25^{\circ}C)$

Symbol	Parameter	
V_{BR}	Breakdown voltage	
I _{RM}	Leakage current @ V _{RM}	
V _{RM}	Stand-off voltage	
V _{CL}	Clamping voltage	
Rd	Dynamic resistance	
I _{PP}	Peak pulse current	
R _{I/O}	Series resistance between Input & Output	
Cline	Input capacitance per line	

Symbol	Test conditions	Min.	Тур.	Max.	Unit
V _{BR}	I _R = 1 mA	6	8	10	V
I _{RM}	V _{RM} = 3V			500	nA
R _{I/O}	60,	90	100	110	Ω
Cline	@ 0V bias		28	35	pF
Rt / Ft	Induced rise and fall time 10-90% at 26 MHz frequency signal V = 1.9 V (Rt / Ft input 1 ns, 50Ω impedance generator)		8 (1)		ns

⁽¹⁾ guaranteed by design

Figure 3: S21(dB) all lines attenuation measurement and Aplac simulation

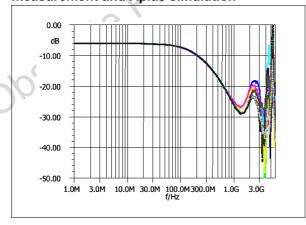
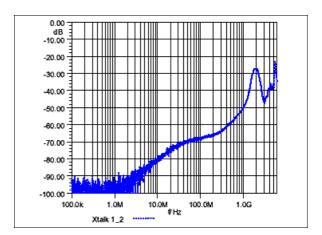



Figure 4: Analog cross talk measurements

2/7

Figure 5: ESD response to IEC61000-4-2 (+15kV air discharge) on one input and on one output

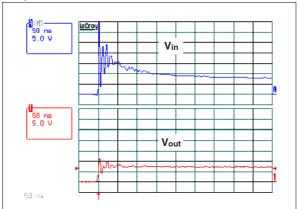


Figure 7: Line capacitance versus applied voltage

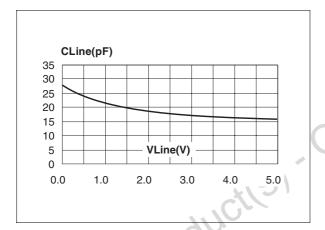


Figure 9: Fall time 10-90% measurements with 1.9V signal at 26 MHz frequency (50 Ω generator)

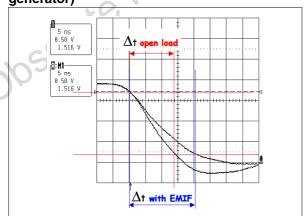


Figure 6: ESD response to IEC61000-4-2 (-15kV air discharge) on one input and on one output

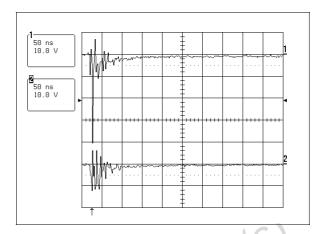


Figure 8: Rise time 10-90% measurements with 1.9V signal at 26 MHz frequency (50 Ω generator)

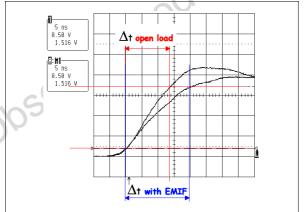


Figure 10: Aplac model

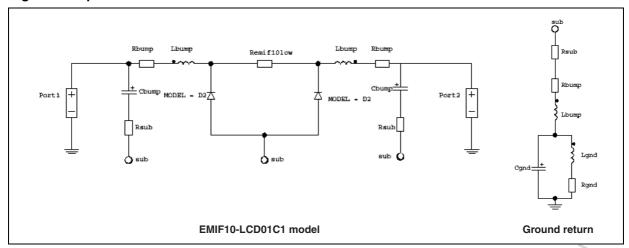


Figure 11: Aplac parameters

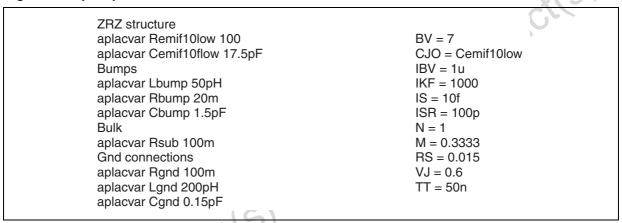
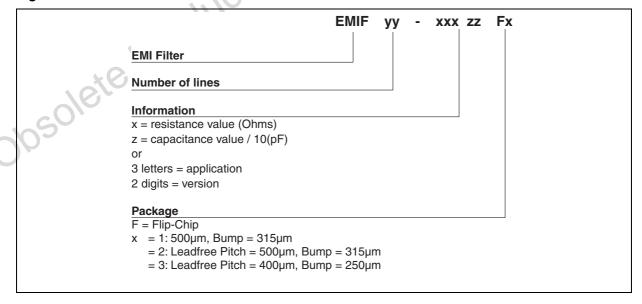



Figure 12: Order Code

577

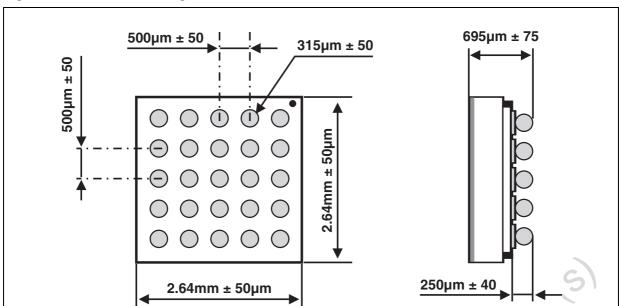


Figure 13: FLIP-CHIP Package Mechanical Data

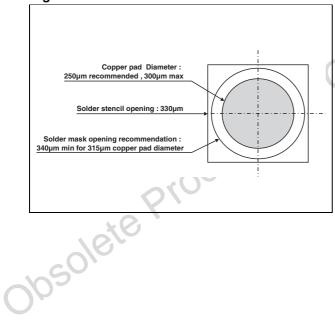
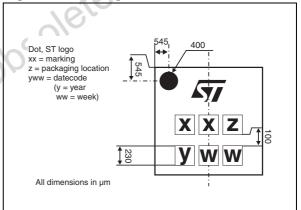



Figure 15: Marking

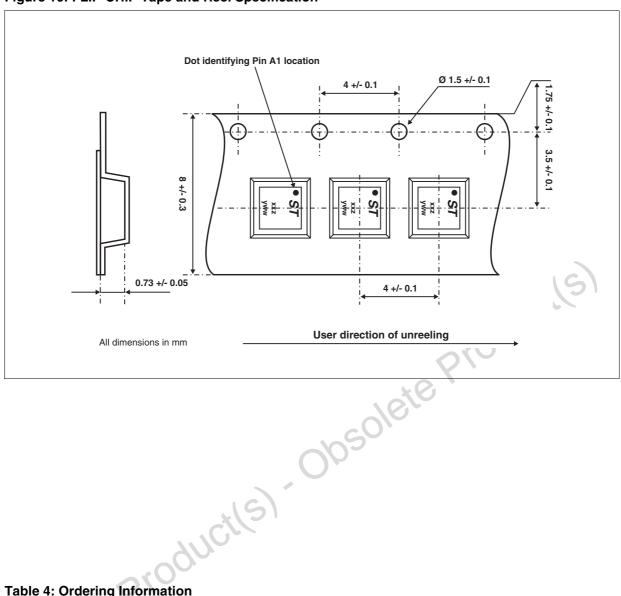


Figure 16: FLIP-CHIP Tape and Reel Specification

Table 4: Ordering Information

Part Number	Marking	Package	Weight	Base qty	Delivery mode
EMIF10-LCD01C1	FL	Flip-Chip	9.3 mg	5000	Tape & reel (7")

Note: Further packing information available in the application notes - AN1235: "Flip-Chip: Package description and recommandations for use" - AN1751: "EMI Filters: Recommendations and measurements"

Table 5: Revision History

Date	Revision	Description of Changes
Sep-2004	1	First issue
09-Jun-2005	2	Modified C _{line} Typical and Maximum values

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patients or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patient or patient rights of STMicroelectronics. Specifications method inchice in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2005 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

